Design and Technology Progression Document

Kapow scheme of work used

Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Structures						
Junk models - Making verbal plans and material choices. - Developing a junk model. Describing their plans. - Improving fine motor/scissor skills with a variety of materials. - Joining materials in a variety of ways. - Giving a verbal evaluation of their own and others' junk models with adult support. - Checking to see if their model matches their plan. - Considering what they would do differently if they were to do it again. - Describing their favourite and least favourite part of their model.	Windmills - Learning the importance of a clear design criteria. - Making stable structures from card, tape and glue. - To know that a structure is something that has been made and put together. - Learning how to turn 2D nets into 3D structures. - To understand that the shape of materials can be changed to improve the strength and stiffness of structures. - To understand that cylinders are a strong type of structure (e.g. the main shape used for windmills and lighthouses). - Following instructions to cut and assemble the supporting structure of a windmill. - Making functioning turbines and axles which are assembled into a main supporting structure. - To understand that axles are used in structures and mechanisms to make parts turn in a circle.	Making a chair - Generating and communicating ideas using sketching and modelling. - Learning about different types of structures, found in the natural world and in everyday objects. - Making a structure according to design criteria. - Creating joints and structures from paper/card and tape. - Building a strong and stiff structure by folding paper. - Comparing the stability of different shapes. - Testing the strength of own structures. - Identifying the weakest part of a structure. - Evaluating the strength, stiffness and stability of own structure. - know that shapes and structures with wide, flat bases or legs are the most stable. - understand that the shape of a structure affects its strength.	Constructing Castles - Designing a castle with key features to appeal to a specific person/purpose. - Drawing and labelling a castle design using 2D shapes, labelling: -the 3D shapes that will create the features - materials needed and colours. - Designing and/or decorating a castle tower on CAD software. - Constructing a range of 3D geometric shapes using nets. - Creating special features for individual designs. - Making facades from a range of recycled materials. - Evaluating own work and the work of others based on the aesthetic of the finished product and in comparison, to the original design. - Suggesting points for modification of the individual designs. - understand that wide and flat based objects are more stable.	Pavilions - Designing a stable pavilion structure that is aesthetically pleasing and selecting materials to create a desired effect. - Building frame structures designed to support weight. - Creating a range of different shaped frame structures. - Making a variety of freestanding frame structures of different shapes and sizes. - To understand what a frame structure is. - To know that a 'freestanding' structure is one which can stand on its own. - Selecting appropriate materials to build a strong structure and cladding. - Reinforcing corners to strengthen a structure. - Creating a design in accordance with a plan. - Learning to create different textural effects with materials.		Playgrounds - Designing a playground featuring a variety of different structures, considering how the structures will be used, considering effective and ineffective designs. - Building a range of play apparatus structures drawing upon new and prior knowledge of structures. - To know that structures can be strengthened by manipulating materials and shapes. - Measuring, marking and cutting wood to create a range of structures. - Using a range of materials to reinforce and add decoration to structures. - Improving a design plan based on peer evaluation. - Testing and adapting a design to improve it as it is developed. - Identifying what makes a successful structure.

- Evaluating a windmill according to the design criteria. - Suggest points for improvements	- know that materials can be manipulated to improve strength and stiffness. - know that a structure is something which has been formed or made from parts. - know that a 'stable' structure is one which is firmly fixed and unlikely to change or move. - know that a 'strong' structure is one which does not break easily. - know that a 'stiff' structure or material is one which does not bend easily. - know that natural structures are those found in nature. - know that man-made structures are those made by people.	- understand the importance of strength and stiffness in structures.	- Evaluating structures made by the class. - Describing what characteristics of a design and construction made it the most effective. - Considering effective and ineffective designs.		
	Possible-Fairground wheel - Selecting a suitable linkage system to produce the desired motion. - Designing a wheel. - Selecting materials according to their characteristics. - Following a design brief - Evaluating different designs. - Testing and adapting a design. Technical - know that different materials have different properties and are therefore suitable for different uses		- Designing a shape that reduces air resistance. - Drawing a net to create a structure from. - Choosing shapes that increase or decrease speed as a result of air resistance. - Personalising a design. - Measuring, marking, cutting and assembling with increasing accuracy. - Making a model based on a chosen design. - understand that all moving things have kinetic energy. Technical - understand that kinetic energy is the energy that something (object/person) has by being in motion.	- Designing a pop-up book which uses a mixture of structures and mechanisms. - Following a design brief to make a pop-up book, neatly and with focus on accuracy. - Storyboarding ideas for a book. - Naming each mechanism, input and output accurately. - Making mechanisms and/or structures using sliders, pivots and folds to produce movement. - Using layers and spacers to hide the workings of mechanical parts for an aesthetically pleasing result.	

				- know that air resistance is the level of drag on an object as it is forced through the air. - understand that the shape of a moving object will affect how it moves due to air resistance.	Technical - know that mechanisms control movement. - understand that mechanisms can be used to change one kind of motion into another. - understand how to use sliders, pivots and folds to create paper-based mechanisms.	
Electrical systems (KS2 only)						
				- Designing a torch, considering the target audience and creating both design and success criteria focusing on features of individual design ideas - Making a torch with a working electrical circuit and switch. - Using appropriate equipment to cut and attach materials. - Assembling a torch according to the design and success criteria. - Testing and evaluating the success of a final product. Technical - understand that electrical conductors are materials which electricity can pass through. - understand that electrical insulators are materials which electricity cannot pass through. - know that a battery contains stored electricity that can be used to power products. - know that an electrical circuit must be complete for electricity to flow.	- Identifying factors that could be changed on existing products and explaining how these would alter the form and function of the product - Developing design criteria based on findings from investigating existing products. - Developing design criteria that clarifies the target user. - Altering a product's form and function by tinkering with its configuration. - Making a functional series circuit, incorporating a motor. - Constructing a product with consideration for the design criteria. - Breaking down the construction process into steps so that others can make the product. - Carry out a product analysis to look at the purpose of a product along with its strengths and weaknesses. - Determining which parts of a product affect its function and which parts affect its form.	

		- know that a switch can be used to complete and break an electrical circuit.	- Analysing whether changes in configuration positively or negatively affect an existing product. - Peer evaluating a set of instructions to build a product. Technical - know that series circuits only have one direction for the electricity to flow. - know when there is a break in a series circuit, all components turn off. - know that an electric motor converts electrical energy into rotational movement, causing the motor's axle to spin. - know a motorised product is one which uses a motor to function.	
Cooking and nutrition				
Fruit and vegetables - Designing smoothie carton packaging by-hand - Chopping fruit and vegetables safely to make a smoothie. - Identifying if a food is a fruit or a vegetable. - Learning where and how fruits and vegetables grow. - Tasting and evaluating different food combinations. - Suggesting information to be included on packaging. - Understanding the difference between fruits and vegetables. - understand that some foods typically known as vegetables are fruits (e.g. cucumber).	Eating seasonally - Creating a healthy and nutritious recipe for a savoury tart using seasonal ingredients, considering the taste, texture, smell and appearance of the dish - Knowing how to prepare themselves and a workspace to cook safely in, learning the basic rules to avoid food contamination. - Following the instructions within a recipe. - Establishing and using design criteria to help test and review dishes. - Describing the benefits of seasonal fruits and vegetables and the impact on the environment.		What could be healthier? - Adapting a traditional recipe, understanding that the nutritional value of a recipe alters if you remove, substitute or add additional ingredients. - Writing an amended method for a recipe to incorporate the relevant changes to ingredients. - Designing appealing packaging to reflect a recipe. - Using equipment safely, including knives, hot pans and hobs. - Knowing how to avoid cross-contamination. - Following a step-by-step method carefully to make a recipe. - Identifying the nutritional differences between	

- know that a blender is a machine which mixes ingredients together into a smooth liquid. - know that a fruit has seeds and a vegetable does not. - know that fruits grow on trees or vines. - know that vegetables can grow either above or below ground. - know that vegetables can come from different parts of the plant (e.g. roots: potatoes, leaves: lettuce, fruit: cucumber).		- Suggesting points for improvement when making a seasonal tart. - know that not all fruits and vegetables can be grown in the UK. - know that climate affects food growth. - know that vegetables and fruit grow in certain seasons. - know that cooking instructions are known as a 'recipe'. - know that imported food is food which has been brought into the country. - To know that exported food is food which has been sent to another country. - understand that imported foods travel from far away and this can negatively impact the environment. - know that each fruit and vegetable give us nutritional benefits because they contain vitamins, minerals and fibre. - understand that vitamins, minerals and fibre are important for energy, growth and maintaining health. - know safety rules for using, storing and cleaning a knife safely. - know that similar coloured fruits and vegetables often have similar nutritional benefits.		different products and recipes. - Identifying and describing healthy benefits of food groups. - understand where meat comes from - learning that beef is from cattle and how beef is reared and processed, including key welfare issues. - know how adapt a recipe to make it healthier by substituting ingredients. - know how to use a nutritional calculator to see how healthy a food option is. - To understand that 'cross-contamination' means bacteria and germs have been passed onto ready-to-eat foods and it happens when these foods mix with raw meat or unclean objects.

Textiles

Bookmarks
 - Discussing what a good

 design needs.- know that a design is a way of planning our idea before we start
- Designing a bookmark.
- Designing a simple
pattern with paper
- Choosing from available
materials.
- Developing fine
motor/cutting skills with scissors.
- Exploring fine motor/threading and weaving (under, over technique) with a variety of materials.
- Using a prepared needle and wool to practise
threading.
- To know that threading is putting one material through an object.

Puppets

- Using a template to
create a design for a
puppet.
- Cutting fabric neatly with scissors.
- Using joining methods to decorate a puppet.
- Sequencing the steps
taken during construction.
- Reflecting on a finished product, explaining likes and dislikes.
- know that 'joining technique' means connecting two pieces of material together.
- know that there are
various temporary
methods of joining fabric by using staples. glue or pins.
- understand that different techniques for joining materials can be used for different purposes. - understand that a template (or fabric pattern) is used to cut out the same shape multiple times.
- know that drawing a design idea is useful to see how an idea will look

Waistcoats

- Designing a waistcoat in accordance to a specification linked to set of design criteria.
- Annotating designs, to explain their decisions.
- Using a template when cutting fabric to ensure they achieve the correct shape.
- Using pins effectively to secure a template to fabric without creases or bulges
- Marking and cutting fabric accurately, in accordance with their design.
- Sewing a strong running stitch, making small, neat stitches and following the edge.
- Tying strong knots.
- Decorating a waistcoat, attaching features (such as appliqué) using thread.
- Finishing the waistcoat with a secure fastening (such as buttons).
- Learning different decorative stitches.
- Sewing accurately with evenly spaced, neat stitches.
- Reflecting on their work continually throughout the design, make and evaluate process.
- understand that it is important to design clothing with the client/ target customer in mind. - know that using a template (or clothing pattern) helps to accurately mark out a design on fabric.

I						client's request and how it will benefit the customers - Explaining the key functions in their program, including any additions - Explaining how their program fits the design criteria and how it would be useful as part of a navigation tool - Explaining the key functions and features of the navigation tool to the client as part of a product concept pitch - Demonstrating a functional program as part of a product concept

